Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
oCSparseMatrixGeneric< _Field, _Row, VectorCategories::SparseAssociativeVectorTag >::_IndexedIterator< RepIterator, RowIdxIterator, _I_Element >No doc
oCBitVectorBinary constant defined both for 32 and 64 bits
oCBlackboxArchetypeShowing the member functions provided by all blackbox matrix classes
oCBlackboxBlockContainerBase< _Field, _Blackbox >A base class for BlackboxBlockContainer
oCBlackboxBlockContainerBase< Field, Blackbox >
oCBlackboxContainerBase< Field, Blackbox >A base class for BlackboxContainer
oCBlackboxContainerBase< Field, _Blackbox >
oCBlackboxContainerBase< Field, Vector >
oCBlackboxFactory< Field, Blackbox >A tool for computations with integer and rational matrices
oCBlasMatrix< Field, Rep >Dense matrix representation
oCBlasMatrix< _Field >
oCBlasMatrix< _Field, _Storage >
oCBlasMatrix< Domain >
oCBlasMatrix< Field >
oCBlasMatrix< Field, typename LinBox::Vector< Field >::Dense >
oCBlasMatrix< Givaro::Modular< double > >
oCBlasMatrix< Givaro::ZRing< Element > >
oCBlasMatrix< MultiModDouble >No Doc
oCBlasMatrix< typename _Matrix::Field, typename _Matrix::Rep >
oCBlasMatrixDomain< Field_ >Interface for all functionnalities provided for BlasMatrix
oCBlasMatrixDomain< Field >
oCBlasMatrixDomainAddin< Field, Operand1, Operand2 >C += A
oCBlasMatrixDomainInv< MultiModDouble, BlasMatrix< MultiModDouble > >Specialisation for MultiModDouble
oCBlasMatrixDomainMulAdd< BlasVector< Field >, BlasMatrix< Field, _Rep >, BlasVector< Field > >What about subvector/submatrices ?
oCBlasMatrixDomainSubin< Field, Operand1, Operand2 >C -= A
oCBlasPermutation< _UnsignedInt >Lapack-style permutation
oCBlasPermutation< size_t >
oCBlasSubmatrix< _Matrix >Dense Submatrix representation
oCBlasSubmatrix< BlasMatrix< _Field > >
oCBlockCoppersmithDomain< _Domain, _Sequence >Compute the linear generator of a sequence of matrices
oCBlockHankelLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix, _Block >Block Hankel LiftingContianer
oCBlockLanczosSolver< Field, Matrix >Block Lanczos iteration
oCBlockMasseyDomain< _Field, _Sequence >Compute the linear generator of a sequence of matrices
oCBlockMasseyDomain< Field, LinBox::BlackboxBlockContainerRecord >
oCBlockWiedemannLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix >Block Wiedemann LiftingContianer
oCBlockWiedemannTraitsTo select algorithms that use Giorgi' algorithms/block-massey-domain.h
oCBooleanSwitchBoolean switch object
oCButterfly< _Field, Switch >Switching Network based BlackBox Matrix
oCCekstvSwitch< Field >The default butterfly switch object
oCChineseRemainderSeq< CRABase >No doc
oCClassifyRing< Field >Default ring category
oCCommentatorGive information to user during runtime
oCCompanion< Field_ >Companion matrix of a monic polynomial
oCCompose< _Blackbox1, _Blackbox2 >Blackbox of a product: $C = AB$, i.e $Cx \gets A(Bx)$
oCCompose< _Blackbox, _Blackbox >Specialization for _Blackbox1 = _Blackbox2
oCCompose< LinBox::Submatrix< Blackbox >, LinBox::Transpose< LinBox::Submatrix< Blackbox > > >
oCCompose< LinBox::Transpose< LinBox::Submatrix< Blackbox > >, LinBox::Submatrix< Blackbox > >
oCComposeOwner< _Blackbox1, _Blackbox2 >Blackbox of a product: $C = AB$, i.e $Cx \gets A(Bx)$
oCComposeTraits< IMatrix >Used in ..., for example
oCComposeTraits< BlasMatrix< Field, Rep > >Used in smith-binary, for example
oCBlasSubmatrix< _Matrix >::ConstIndexedIteratorRaw Indexed Iterator (const version)
oCBlasSubmatrix< _Matrix >::ConstIteratorRaw Iterators (const version)
oCContainerCategoriesUsed to separate BLAS2 and BLAS3 operations
oCContainerTraits< Container >Trait for the Category
oCContainerTraits< std::vector< _Rep > >
oCCOO1Implicit value COO (with only ones, or mones, or..)
oCCoppersmithTraitsTo select algorithms that use Yuhasz' algorithms/coppersmith.h
oCCRATraitsSolve using CRA (iterations uses SolveMethod)
oCCSF< _Field >Space efficient representation of sparse matrices
oCCSRCompressed row
oCCSR1Implicit value CSR (with only ones, or mones, or..)
oCDataSeriesThis structure holds a bunch of timings
oCDenseMat< _Element >To be used in standard matrix domain
oCDenseMat< SlicedBase< _Domain::Word_T > >
oCDiagonal< Field, Trait >Random diagonal matrices are used heavily as preconditioners
oCDiagonal< _Field, VectorCategories::DenseVectorTag >Specialization of Diagonal for application to dense vectors
oCDiagonal< _Field, VectorCategories::SparseAssociativeVectorTag >Specialization of Diagonal for application to sparse associative vectors
oCDiagonal< _Field, VectorCategories::SparseSequenceVectorTag >Specialization of Diagonal for application to sparse sequence vectors
oCDiagonal< Field >
oCDif< _Blackbox1, _Blackbox2 >Blackbox of a difference: C := A - B, i.e Cx = Ax - Bx
oCDiophantineSolver< QSolver >DiophantineSolver<QSolver> creates a diophantine solver using a QSolver to generate rational solutions
oCDirectSum< Blackbox1, Blackbox2 >If C = DirectSum(A, B) and y = xA and z = wB, then (y,z) = (x,w)C
oCDirectSum< Companion< Field_ > >
oCDixonLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix >Dixon Lifting Container
oCDotProductDomain< Givaro::Modular< uint16_t > >Specialization of DotProductDomain for unsigned short modular field
oCDotProductDomain< Givaro::Modular< uint32_t > >Specialization of DotProductDomain for uint32_t modular field
oCDotProductDomain< Givaro::Modular< uint64_t > >Specialization of DotProductDomain for uint64_t modular field
oCDotProductDomain< Givaro::Modular< uint8_t > >Specialization of DotProductDomain for unsigned short modular field
oCDotProductDomain< Givaro::ModularBalanced< double > >Specialization of DotProductDomain
oCEarlySingleCRA< Domain_Type >NO DOC
oCEchelonFormDomain< Field >Echelon form domain
oCElementAbstractAbstract element base class, a technicality
oCElementArchetypeField and Ring element interface specification and archetypical instance class
oCEliminator< Field, Matrix >Elimination system
oCEliminator< Field, LinBox::ZeroOne >
oCELL_REllpack fixed row
oCExceptionThis is the exception class in LinBox
oCFieldAbstractField base class
oCFieldAXPY< Field >FieldAXPY object
oCFieldAXPY< Field_ >
oCFieldAXPY< GF2 >
oCFieldAXPY< Givaro::Modular< _Element > >Specialization of FieldAXPY for parameterized modular field
oCFieldAXPY< Givaro::Modular< double > >
oCFieldAXPY< Givaro::Modular< double, double > >Specialization of FieldAXPY for modular double
oCFieldAXPY< Givaro::Modular< float > >
oCFieldAXPY< Givaro::Modular< float, float > >Specialization of FieldAXPY for modular float
oCFieldAXPY< Givaro::Modular< int16_t > >
oCFieldAXPY< Givaro::Modular< int32_t > >
oCFieldAXPY< Givaro::Modular< int64_t > >
oCFieldAXPY< Givaro::Modular< int8_t > >
oCFieldAXPY< Givaro::Modular< uint16_t > >Specialization of FieldAXPY for uint16_t modular field
oCFieldAXPY< Givaro::Modular< uint32_t > >Specialization of FieldAXPY for unsigned short modular field
oCFieldAXPY< Givaro::Modular< uint64_t > >Specialization of FieldAXPY for unsigned short modular field
oCFieldAXPY< Givaro::Modular< uint8_t > >Specialization of FieldAXPY for uint8_t modular field
oCFieldAXPY< Givaro::ModularBalanced< double > >Specialization of FieldAXPY
oCFieldAXPY< Givaro::ModularBalanced< float > >
oCFieldAXPY< Givaro::ModularBalanced< int32_t > >
oCFieldAXPY< Givaro::ModularBalanced< int64_t > >
oCFieldAXPY< PIR_ntl_ZZ_p >
oCFieldAXPY< PIRModular< int32_t > >
oCFieldInterfaceThis field base class exists solely to aid documentation organization
oCFieldTraits< Field >FieldTrait
oCFullMultipCRA< Domain_Type >NO DOC..
oCGaussDomain< _Field >Repository of functions for rank by elimination on sparse matrices
oCGaussDomain< Field >
oCGenericRandIter< Field >Random field base element generator
oCGenericTagGeneric ring
oCVectorCategories::GenericVectorTagGeneric vector (no assumption is made)
oCGetEntryCategory< BB >GetEntryCategory is specialized for BB classes that offer a local getEntry
oCGivaroRnsFixedCRA< Domain_Type >NO DOC..
oCGivPolynomialRing< Domain, StorageTag >Polynomials
oCGmpRandomPrimeGenerating random prime integers, using the gmp library
oCGMPRationalElementElements of GMP_Rationals
oCHilbert_JIT_Entry< _Field >The object needed to build a Hilbert matrix as a JIT matrix
oCHom< Source, Target, Enabled >Map element of source ring(field) to target ringAn instance of Hom is a homomorphism from a ring of type Source to a ring (usually field) of type Target
oCHom< Source, Target >
oCImageField< Source, Target >ImageFields are fields which are targets of a ring homomorphism from a source ring
oCIMLTraitsIML wrapper
oCInconsistentSystem< Vector >Exception thrown when the system to be solved is inconsistent
oCindexDomainClass used for permuting indices
oCIndexedCategory< BB >Trait to show whether or not the BB class has a Indexed iterator
oCIndexedCategory< BlasMatrix< Field, _Rep > >
oCBlasMatrix< Field, Rep >::IndexedIteratorIndexed Iterator
oCBlasSubmatrix< _Matrix >::IndexedIteratorRaw Indexed Iterator
oCZeroOne< Field >::IndexIteratorIndexIterator
oCZeroOne< GF2 >::IndexIteratorIndexIterator
oCInverse< Blackbox >A Blackbox for the inverse
oCInverse< LinBox::Compose< LinBox::Submatrix< Blackbox >, LinBox::Transpose< LinBox::Submatrix< Blackbox > > > >
oCInverse< LinBox::Compose< LinBox::Transpose< LinBox::Submatrix< Blackbox > >, LinBox::Submatrix< Blackbox > > >
oCBlasSubmatrix< _Matrix >::IteratorRaw Iterators
oCZeroOne< Field >::IteratorRaw iterator
oCZeroOne< GF2 >::IteratorRaw iterator
oCJIT_Matrix< _Field, JIT_EntryGenerator >Example of a blackbox that is space efficient, though not time efficient
oCJIT_Matrix< _Field, Hilbert_JIT_Entry< _Field > >
oCLABlockLanczosSolver< Field, Matrix >Biorthogonalising block Lanczos iteration
oCLanczosSolver< Field, Vector >Solve a linear system using the conjugate Lanczos iteration
oCLargeDoubleNO DOC
oCLastInvariantFactor< _Ring, _Solver >This is used in a Smith Form algorithm
oClatticeMethodNTL methods
oCLILVector of pairs
oCLinboxErrorBase class for execption handling in LinBox
oCLocal2_32Fast arithmetic mod 2^32, including gcd
oCLQUPMatrix< Field >LQUP factorisation
oCMasseyDomain< Field, Sequence >Berlekamp/Massey algorithm
oCMatrixArchetype< _Element >Directly-represented matrix archetype
oCMatrixCategoriesFor specializing matrix arithmetic
oCMatrixContainerTrait< Matrix >NODOC
oCMatrixDomain< GF2 >Specialization of MatrixDomain for GF2
oCMatrixHomTrait< Blackbox, Field >Try to map a blackbox over a homorphic ring The most suitable type
oCMatrixPermutation< _UnsignedInt >Permutation classique
oCMatrixRank< _Ring, _Field, _RandomPrime >Compute the rank of an integer matrix in place over a finite field by Gaussian elimination
oCMatrixStream< Field >MatrixStream
oCMatrixStreamReader< Field >An abstract base class to represent readers for specific formats
oCMatrixTraits< Matrix >NO DOC
oCMetaDataThis is the general metadata class
oCMethodMethod specifiers for controlling algorithm choice
oCMGBlockLanczosSolver< Field, Matrix >Block Lanczos iteration
oCModular< Ints >Ring of elements modulo some power of two
oCModularCrookedRandIter< Element >Random field base element generator
oCMoorePenrose< Blackbox >Generalized inverse of a blackbox
oCMVProductDomain< Field >Helper class to allow specializations of certain matrix-vector products
oCMVProductDomain< Field_ >
oCMVProductDomain< Givaro::Modular< uint16_t > >Specialization of MVProductDomain for uint16_t modular field
oCMVProductDomain< Givaro::Modular< uint32_t > >Specialization of MVProductDomain for uint32_t modular field
oCMVProductDomain< Givaro::Modular< uint64_t > >Specialization of MVProductDomain for uint64_t modular field
oCMVProductDomain< Givaro::Modular< uint8_t > >Specialization of MVProductDomain for uint8_t modular field
oCnaiveToom-Cook method
oCNoHomErrorError object for attempt to establish a Hom that cannot exist
oCNTL_ZZInteger ring
oCNTL_ZZ_pWrapper of zz_p from NTL
oCNTL_zz_pLong ints modulo a positive integer
oCNTL_ZZ_pEWrapper of ZZ_pE from NTL Define a parameterized class to handle easily Givaro::ZRing<NTL::ZZ_pE> field
oCNTL_zz_pE_InitialiserUse ZZ_pEBak mechanism too ?
oCNTL_zz_pEXRing (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_zz_p (integers mod a wordsize prime)
oCNTL_ZZ_pXRing (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_ZZ_p (integers mod a wordsize prime)
oCNTL_zz_pXRing (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_zz_p (integers mod a wordsize prime)
oCNullMatrixThis is a representation of the 0 by 0 empty matrix which does not occupy memory
oCOneInvariantFactor< _Ring, _LastInvariantFactor, _Compose, _RandomMatrix >Limited doc so far
oCOpenCLEnvironContainer for all pertenant information needed to use an OpenCL device, compile kernels for the device, track resource usage, and gain exclusive access to the device
oCOpenCLMatrixDomain< Field_ >Interface for all functionnalities provided for BlasMatrix using GPUs
oCPair< I, T >Pair of I and T : struct { column index, value }
oCPlainSubmatrix< MatDom >To be used in reference matrix domain (PlainDomain)
oCPlainSubmatrix< Domain_ >
oCPlotStyle::PlotWhat style of graphic : histogram ? graph ?
oCPlotDataThe raw data to plot
oCPlotGraphThe graph (2D)
oCPlotStyleRepresents a table of values to plot (2D)
oCPoint::PointsNumerical value for x
oCPolynomialBB< Blackbox, Poly >Represent the matrix P(A) where A is a blackbox and P a polynomial
oCPolynomialBBOwner< Blackbox, Poly >Represent the matrix P(A) where A is a blackbox and P a polynomial
oCPowerGaussDomainPowerOfTwo< UnsignedIntType >Repository of functions for rank modulo a prime power by elimination on sparse matrices
oCPreconditionFailedA precondition failed
oCPrimeStream< Element >Prime number stream
oCPrinterSelection of printers
oCModular< Ints >::RandIterRandom iterator generator type
oCRandIterAbstractRandom field element generator
oCRandIterArchetypeRandom field element generator archetype
oCRandomDenseMatrix< Randiter, Field >Random Dense Matrix builder
oCRandomIntegerIter< _Unsigned >Random Integer Iterator
oCRandomIntegerIterator< _Unsigned >Random Prime Generator
oCRandomPrimeIterRandom Prime Iterator
oCRandomPrimeIteratorRandom Prime Generator
oCRankBuilderRandom method for constructing rank
oCRationalReconstruction< _LiftingContainer, RatRecon >Limited doc so far
oCRationalRemainder< RatCRABase >Chinese remainder of rationals
oCRationalRemainder2< RatCRABase, RatRecon >Chinese remainder of rationals
oCRationalSolver< Ring, Field, RandomPrime, MethodTraits >Interface for the different specialization of p-adic lifting based solvers
oCRationalSolver< Ring, Field, RandomPrime, BlockHankelTraits >Block Hankel
oCRationalSolver< Ring, Field, RandomPrime, BlockWiedemannTraits >Partial specialization of p-adic based solver with block Wiedemann algorithm
oCRationalSolver< Ring, Field, RandomPrime, DixonTraits >Partial specialization of p-adic based solver with Dixon algorithm
oCRationalSolver< Ring, Field, RandomPrime, NumSymNormTraits >Solver using a hybrid Numeric/Symbolic computation
oCRationalSolver< Ring, Field, RandomPrime, SparseEliminationTraits >Sparse LU
oCRationalSolver< Ring, Field, RandomPrime, WiedemannTraits >Partial specialization of p-adic based solver with Wiedemann algorithm
oCRawVector< Element >Canonical vector types
oCRawVector< Field::Element >
oCRawVector< Ring::Element >
oCBlasMatrix< Field, Rep >::rebind< _Tp1 >Rebind operator
oCRebind< XXX, U >Used in support of Hom, MatrixHom
oCRebind< std::vector< T >, U >Rebind
oCReverseVector< Vector >Reverse vector class This class wraps an existing vector type and reverses its direction
oCRingInterfaceThis ring base class exists solely to aid documentation organization
oCRNS< Unsigned >RNS
oCScalarMatrix< Field >Blackbox for aI
oCshowProgressionShow progression on the terminal (helper)
oCSideLeft/Right Tag
oCSigmaBasis< _Field >Implementation of $\sigma$-basis (minimal basis)
oCSlicedPolynomialMatrixAddin< Field, Operand1, Operand2 >C += A
oCSlicedPolynomialMatrixSubin< Field, Operand1, Operand2 >C -= A
oCSlicedPolynomialVectorAddin< Field, Operand1, Operand2 >C += A
oCSlicedPolynomialVectorSubin< Field, Operand1, Operand2 >C -= A
oCSmithFormBinary< _Ring, _oneInvariantFactor, _Rank >Compute Smith form
oCSmithFormIliopoulosThis is Iliopoulos' algorithm to diagonalize
oCSmithFormLocal< LocalPID >Smith normal form (invariant factors) of a matrix over a local ring
oCSMMSparse Map of Maps
oCSolveFailedException thrown when the computed solution vector is not a true solution to the system, but none of the problems cited below exist
oCSolverTraitsSolver traits
oCSparse_Vector< T, I >Vector< Pair<T,I> > and actualsize
oCSparseLULiftingContainer< _Ring, _Field, _IMatrix, _FMatrix >SparseLULiftingContainer
oCSparseMapPair of vector/list (Pair of Containers)
oCSparseMatrix< _Field, SparseMatrixFormat::COO >Sparse matrix, Coordinate storage
oCSparseMatrix< _Field, SparseMatrixFormat::COO::implicit >Sparse matrix, Coordinate storage
oCSparseMatrix< _Field, SparseMatrixFormat::CSR >Sparse matrix, Coordinate storage
oCSparseMatrix< _Field, SparseMatrixFormat::ELL >Sparse matrix, Coordinate storage
oCSparseMatrix< _Field, SparseMatrixFormat::ELL_R >Sparse matrix, Coordinate storage
oCSparseMatrix< _Field, SparseMatrixFormat::HYB >Sparse matrix, Coordinate storage
oCSparseMatrix< Field_, SparseMatrixFormat::TPL >Sparse Matrix in Triples storage
oCSparseMatrix< Field_, SparseMatrixFormat::TPL_omp >Sparse matrix representation which stores nonzero entries by i,j,value triples
oCSparseMatrixGeneric< _Field, _Row, Trait >Sparse matrix container This class acts as a generic row-wise container for sparse matrices
oCSparseMatrixGeneric< _Field, _Row >
oCSparseMatrixGeneric< _Field, Vector< _Field >::SparseMap >
oCSparseMatrixGeneric< _Field, Vector< _Field >::SparseMap, VectorCategories::SparseAssociativeVectorTag >
oCSparseMatrixGeneric< _Field, Vector< _Field >::SparsePar >
oCSparseMatrixGeneric< _Field, Vector< _Field >::SparsePar, VectorCategories::SparseParallelVectorTag >
oCSparseMatrixGeneric< _Field, Vector< _Field >::SparseSeq >
oCSparseMatrixGeneric< _Field, Vector< _Field >::SparseSeq, VectorCategories::SparseSequenceVectorTag >
oCSparseMatrixReadHelper< Matrix >Read helper
oCSparseMatrixWriteHelper< Matrix >Write helper
oCSparseParVector/list of pairs (Container of Maps)
oCSparseSeqVector/list of pairs (Container of Pairs)
oCSquarize< Blackbox >Transpose matrix without copying
oCSubiterator< Iterator >Subvector iterator class provides striding iterators
oCSubiterator< _blasRep::iterator >
oCSubiterator< _Vector::Rep::iterator >
oCSubiterator< typename Rep::const_iterator >
oCSubiterator< typename Rep::iterator >
oCSubmatrix< Blackbox, Trait >Leading principal minor of existing matrix without copying
oCSubmatrix< Blackbox >
oCSubmatrix< Blackbox, VectorCategories::DenseVectorTag >Specialization for dense vectors
oCSubmatrixAdapter< _Matrix >Generic submatrix view adapter used internally in the OpenCLMatrixDomain
oCSubmatrixOwner< Blackbox, VectorCategories::DenseVectorTag >Specialization for dense vectors
oCSubRowMatrix< Matrix, MatrixCategories::RowMatrixTag >Submatrix consisting contiguous rows of a row based matrix
oCSubvector< Iterator, ConstIterator >Dense subvectorThis class provides a statically sized subvector of a random access container (such as std::vector, deque)
oCSubvector< Subiterator< _blasRep::iterator > >
oCSubvector< Subiterator< _Vector::Rep::iterator > >
oCSubvector< Subiterator< typename Rep::const_iterator > >
oCSubvector< Subiterator< typename Rep::iterator > >
oCSubvector< typename Rep::const_iterator >
oCSubvector< typename Rep::iterator, typename Rep::const_iterator >
oCSum< _Blackbox1, _Blackbox2 >Blackbox of a matrix sum without copying
oCSumOwner< _Blackbox1, _Blackbox2 >Blackbox of a matrix sum without copying
oCSylvester< _Field >This is a representation of the Sylvester matrix of two polynomials
oCPlotStyle::TermWhat format the plot should be in?
oCTernaryLatticeNO DOC
oCThreadBuilt on posix threadsThis is a thread interface, built on posix threads
oCPoint::TimesY time
oCTimeSelectSelection of best times in a series
oCToeplitz< _CField, _PRing >This is the blackbox representation of a Toeplitz matrix
oCToeplitz< _Field >
oCToeplitz< typename _PRing::CoeffField, _PRing >Specialization for when the field of matrix elements is the same as the coefficient field of the polynomial field
oCTPLVector of triples
oCTPL_ompTriplesbb for openmp
oCTraceCategory< BB >Trait to show whether or not the BB class has a local trace function
oCTranspose< Blackbox >Transpose matrix without copying
oCTranspose< LinBox::Submatrix< Blackbox > >
oCTransposedBlasMatrix< Matrix >TransposedBlasMatrix
oCTransposeMatrix< Matrix, Trait >Matrix transpose
oCTransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, _Row > >
oCTransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, Vector< _Field >::SparseMap > >
oCTransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, Vector< _Field >::SparsePar > >
oCTransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, Vector< _Field >::SparseSeq > >
oCTransposeOwner< Blackbox >Transpose matrix without copying
oCUnparametricRandIter< NTL::ZZ_p >Constructor for random field element generator
oCVectorCategoriesList of vector categories
oCVectorFraction< Domain >VectorFraction<Domain> is a vector of rational elements with common reduced denominator
oCVectorFraction< Ring >
oCVectorStream< _Vector >Vector factory
oCVectorStream< BitVector >
oCVectorTraits< Vector >Vector traits template structure
oCWiedemannLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix, _FPolynomial >Wiedemann LiftingContianer
oCWiedemannSolver< Field >Linear system solvers based on Wiedemann's method
oCZeroOne< Field >Time and space efficient representation of sparse {0,1}-matrices
oCZeroOne< GF2 >Time and space efficient representation of sparse matrices over GF2
oCZeroOne< Givaro::ZRing< Integer > >
\CZOQuad< _Field >A class of striped or block-decomposed zero-one matrices